Refine Your Search

Topic

Search Results

Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

A Method for Building Vehicle Trajectory Data Sets Based on Drone Videos

2023-04-11
2023-01-0714
The research and development of data-driven highly automated driving system components such as trajectory prediction, motion planning, driving test scenario generation, and safety validation all require large amounts of naturalistic vehicle trajectory data. Therefore, a variety of data collection methods have emerged to meet the growing demand. Among these, camera-equipped drones are gaining more and more attention because of their obvious advantages. Specifically, compared to others, drones have a wider field of bird's eye view, which is less likely to be blocked, and they could collect more complete and natural vehicle trajectory data. Besides, they are not easily observed by traffic participants and ensure that the human driver behavior data collected is realistic and natural. In this paper, we present a complete vehicle trajectory data extraction framework based on aerial videos. It consists of three parts: 1) objects detection, 2) data association, and 3) data cleaning.
Technical Paper

A Usability Study on In-Vehicle Gesture Control

2016-09-14
2016-01-1870
Gesture control has been increasingly applied to automotive industry to reduce the distraction caused by in-vehicle interactions to the primary task of driving. The aim of this study is to find out if gestures can reasonably be used to control in-car devices. Since there exists a big cultural difference of gesture between different countries because of its particularity, a set of gestures which support intuitive human-machine interaction in an automotive environment is searched. The results show a gesture dictionary for a variety of on-board functions, which conforms to Chinese drivers’ driving habits. Furthermore, this paper also describes a driving simulator test to evaluate the usability of gesture from different aspects including the effectiveness, efficiency, satisfaction, memorability and security. Static driving simulator is considered as an excellent environment for the in-car secondary task as its high safety level, repeatability and reliability.
Technical Paper

Driver Risk Perception Model under Critical Cut-In Scenarios

2018-08-07
2018-01-1626
In China Cut-in scenarios are quite common on both highway and urban road with heavy traffic. They have a potential risk of rear-end collision. When facing a cutting in vehicle, driver tends to brake in most case to reduce collision risk. The timing and dynamic characteristics of brake maneuver are indicators of driver subjective risk perception. Time to collision (TTC) and Time Headway (THW) demonstrate objective risk. This paper aims at building a model quantitatively revealing the relationship between drivers’ subjective risk perception and objective risk. A total of 66 valid critical Cut-in cases was extracted from China-FOT, which has a travel distance of about 130 thousand miles. It is found that under Cut-in scenarios, driver tended to brake when the cutting in vehicle right crossing line. This time point was defined as initial brake time. Brake strength and brake speed were taken to describe brake maneuver.
Technical Paper

Critical Driving Scenarios Extraction Optimization Method Based on China-FOT Naturalistic Driving Study Database

2018-08-07
2018-01-1628
Due to the differences in traffic situations and traffic safety laws, standards for extraction of critical driving scenarios (CDSs) vary from different countries and areas around the world. To maintain the characteristic variables under the Chinese typical CDSs, this paper uses the three-layer detection method to extract and detect CDSs in the Natural Driving Data from China-FOT project which executing under the real traffic situation in China. The first layer of detection is mainly based on the feature distributions which deviate from normal driving situations. These distributions associated with speed and longitudinal acceleration/lateral acceleration/yaw rate also quantify the critical levels classification.
Technical Paper

Study on Important Indices Related to Driver Feelings for LKA Intervention Process

2018-08-07
2018-01-1586
Lane Keeping Assistance (LKA) system is a very important part in Advanced Driver Assistance Systems (ADAS). It prevents a vehicle from departing out of the lane by exerting intervention. But an inappropriate performance during LKA intervention makes driver feel uncomfortable. The intervention of LKA can be divided into 3 parts: intervention timing, intervention process and intervention ending. Many researches have studied about the intervention timing and ending, but factors during intervention process also affect driver feelings a lot, such as yaw rate and steering wheel velocity. To increase driver’s acceptance of LKA, objective and subjective tests were designed and conducted to explore important indices which are highly correlated with the driver feelings. Different kinds of LKA controller control intervention process in different ways. Therefore, it’s very important to describe the intervention process uniformly and objectively.
Technical Paper

Evaluation and Optimization of Driver Steering Override Strategy for LKAS Based on Driver’s Acceptability

2018-08-07
2018-01-1631
In order to satisfy design requirements of Lane Keeping Assistance System (LKAS), a Driver Steering Override (DSO) strategy is necessary for driver’s interaction with the assistance system. The assistance system can be overridden by the strategy in case of lane change, obstacle avoidance and other emergency situations. However, evaluation and optimization of the DSO strategy for LKAS cannot easily be completed quantitatively considering driver’s acceptability. In this research, firstly subjective and objective evaluation experiment is designed. Secondly, correlations between the subjective and the objective evaluation results are established by using regression analysis. Finally, based on the correlations established previously, the optimal performance of DSO strategy is obtained by setting the desired comprehensive evaluation ratings as the optimized goal.
Technical Paper

Analysis of Human Machine Interaction Program in Lane Keeping Assist System Based on Field Test

2018-08-07
2018-01-1632
Lane-keeping assist system (LKA) alerts the driver or intervenes in the driving when the vehicle deviates from the lane. But its effect is highly dependent on the driver’s acceptance. Distance to Lane Crossing (DTLC) and Time to Lane Crossing (TTLC) are two important factors to consider the danger level of the scenario, which are also two references for drivers to make decisions. At present, most of the functional design standards are based on these values, while they often differ for different vehicle movements. This study uses a driving robot to precisely control the test conditions and performs field tests on two advanced autonomous vehicles in National Intelligent Connected Vehicle (Shanghai) Pilot Zone. The test conditions are extended based on various test standards and the LKA performance of vehicles in the pre-experiment.
Technical Paper

Naturalistic Driving Behavior Analysis under Typical Normal Cut-In Scenarios

2019-04-02
2019-01-0124
Cut-in scenarios are common and of potential risk in China but Advanced Driver Assistant System (ADAS) doesn’t work well under such scenarios. In order to improve the acceptance of ADAS, its reactions to Cut-in scenarios should meet driver’s driving habits and expectancy. Brake is considered as an express of risk and brake tendency in normal Cut-in situations needs more investigation. Under critical Cut-in scenarios, driver tends to brake hard to eliminate collision risk when cutting in vehicle right crossing lane. However, under less critical Cut-in scenarios, namely normal Cut-in scenarios, driver brakes in some cases and takes no brake maneuver in others. The time when driver initiated to brake was defined as key time. If driver had no brake maneuver, the time when cutting-in vehicle right crossed lane was defined as key time. This paper focuses on driver’s brake tendency at key time under normal Cut-in situations.
Technical Paper

Reward Function Design via Human Knowledge Graph and Inverse Reinforcement Learning for Intelligent Driving

2021-04-06
2021-01-0180
Motivated by applying artificial intelligence technology to the automobile industry, reinforcement learning is becoming more and more popular in the community of intelligent driving research. The reward function is one of the critical factors which affecting reinforcement learning. Its design principle is highly dependent on the features of the agent. The agent studied in this paper can do perception, decision-making, and motion-control, which aims to be the assistant or substitute for human driving in the latest future. Therefore, this paper analyzes the characteristics of excellent human driving behavior based on the six-layer model of driving scenarios and constructs it into a human knowledge graph. Furthermore, for highway pilot driving, the expert demo data is created, and the reward function is self-learned via inverse reinforcement learning. The reward function design method proposed in this paper has been verified in the Unity ML-Agent environment.
Technical Paper

Analysis of the Correlation between Driver's Visual Features and Driver Intention

2019-04-02
2019-01-1229
Driver behaviors provide abundant information and feedback for future Advanced Driver Assistance Systems (ADAS). Driver’s eye and head may present some typical movement patterns before executing driving maneuvers. It is possible to use driver’s head and eye movement information for predicting driver intention. Therefore, to determine the most important features related to driver intention has attracted widespread research interests. In this paper, a method to analyze the correlation between driver’s visual features and driver intention is proposed, aiming to determine the most representative features for driver intention prediction. Firstly, naturalistic driving experiment is conducted to collect driver’s videos during executing lane keeping and lane change maneuvers. Then, driver’s head and face visual features are extracted from those videos. By using boxplot and independent samples T-test, features which have significant correlation with driver intention are found.
Technical Paper

Fuel Economy and Emissions of a 7L Common Rail Diesel Engine during Torque Rise Transient Process

2015-04-14
2015-01-1068
Previous studies have indicated that longer torque increase time benefits the reduction of emissions during transient process for a diesel engine. However, quantitative conclusions on reduction of emissions and effects on fuel economy have not been made clear so far. The aim of this study was to evaluate the transient process of diesel engine under different torque increase time, and to find the quantitative statement between torque increase time, fuel economy and engine-out emissions. To do this, experiment was carried out on a 7L common rail diesel engine used for commercial vehicles. Three engine speeds (1100r·min−1, 1300r·min−1 and 1500r·min−1) were chosen to represent an engine working range. For each speed, the engine torque is increased within different time (0.5s, 1s, 2s and 5s). It was shown that, in the transient process mentioned above, engine torque increase time effects fuel economy, smoke opacity and CO emission.
Technical Paper

Electric Vehicle Behavioral Modeling Methods for Motor Drive System EMI Design Optimization

2015-04-14
2015-01-1204
Electromagnetic interference (EMI) is a common problem in power electronics systems. Pulse-width modulation (PWM) control of semiconductor devices in a power converter circuit creates discontinuity in voltage and current with rich harmonics over a broad frequency range, creating both conducted and radiated noise. The increase in switching speed enabled by new power semiconductor devices helps to reduce converter size and reduce switching losses, but further exacerbates the EMI problem. Complying with regulatory EMI emission limits requires the use of EMI filters in almost all power converter designs, and EMI filters are often the dominant elements for system volume, weight, and cost. Electromagnetic interference (EMI) filtering is a critical driver for volume and weight for many applications, particularly in airborne and other mobile platforms.
Technical Paper

Clutch Coordination Control for Series-Parallel DHT Mode Changing

2022-10-28
2022-01-7046
As a newly designed hybrid transmission, DHT (Dedicated Hybrid Transmission) owns the advantages of compact structure, multi-modes and excellent comprehensive performance. Compared with the traditional add-on hybrid transmission with one single motor, DHT uses one independent generator for engine starting and speed adjusting which can be largely improve the driving performance in the mode changing process. Based on the series-parallel DHT with wet clutch for power coupling, this paper firstly analyses the power coupling clutch device functionalities from the power flow viewpoint under normal and limp home condition. And for the changing process from series to parallel mode, a clutch coordination control strategy is designed by combining generator fast speed adjusting with clutch accurately pressure controlling to fulfill the fast driver intension response and clutch protection.
Technical Paper

Analysis of Steering Model for Emergency Lane Change Based on the China Naturalistic Driving Data

2017-03-28
2017-01-1399
A driver steering model for emergency lane change based on the China naturalistic driving data is proposed in this paper. The steering characteristic of three phases is analyzed. Using the steering primitive fitting by Gaussian function, the steering behaviors in collision avoidance and lateral movement phases can be described, and the stabilization steering principle of yaw rate null is found. Based on the steering characteristic, the near and far aim point used in steering phases is analyzed. Using the near and far aim point correction model, a driver steering model for emergency lane change is established. The research results show that the driver emergency steering model proposed in this paper performs well when explaining realistic steering behavior, and this model can be used in developing the ADAS system.
Journal Article

Active Noise Equalization of Vehicle Low Frequency Interior Distraction Level and its Optimization

2016-04-05
2016-01-1303
On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
Technical Paper

Adaptive Design of Driver Steering Override Characteristics for LKAS

2019-11-04
2019-01-5030
Lane Keeping Assistance System (LKAS) is a typical lateral driver assistance system with low acceptance. One of the main reasons is that fixed parameters cannot satisfy individual differences. So LKAS adaptive to driver characteristics needs to be designed. Driver Steering Override (DSO) process is an important process of LKAS. It happens when contradiction between driver’s intention and system behavior occurs. As feeling of overriding will affect the overall experience of using LKAS, the design of DSO characteristics is worthy of attention. This research provided an adaptive design scheme aiming at DSO characteristics for LKAS by building Driver Preference Model (DPM) based on simulator test data from preliminary experiments. The DPM was to represent the relationship between driver characteristics indices and driver preferred system characteristics indices. So that new drivers’ preference can be predicted by DPM based on their own daily driving data with LKAS switched off.
Technical Paper

Prediction Model of Driving Range of Electric Vehicle Based on Driver’s Driving Behavior

2019-11-04
2019-01-5058
Aiming at the problem of "mileage anxiety" caused by the inaccurate estimation of vehicle owners due to the complicated and changeable actual driving conditions, the current study of electric driving range prediction focuses on exploring the battery parameters or fitting the linear relationship between electric vehicle SOC (state of charge) and driving range under ideal conditions of experiments or software simulation, which ignores the actual vehicle driving conditions and the difference in driving range due to differences in driver's driving behaviors. This paper puts forward an innovative prediction model of the driving mileage of pure electric vehicles based on driver's driving behavior.
Technical Paper

Analysis of the Driver’s Breaking Response in the Safety Cut-in Scenario Based on Naturalistic Driving

2019-11-04
2019-01-5053
For the personification of automotive vehicle function performance under common traffic scenarios, analysis of human driver behavior is necessary. Based on China Field Operational Test (China-FOT) database of China Natural Driving Study project, this paper studies the driver's response in the common cut-in scenario. A total of 266 cut-in cases are selected by manual interception of driving recorder video. The relevant traffic environment characteristics are also extracted from video, including light conditions, road conditions, scale and lateral position of cut-in vehicle, etc. Dynamic information is decoded form CAN, such as speed, acceleration and so on. Then image processing results, such as relative speed and distance of cut-in and subject vehicles, are calculated. Statistical results based on above information show the response type and distribution of human driver: the behavior of keeping lane is 96.24%, in which the ratio of braking response is 51.13%.
X